Cambridge IGCSE ${ }^{\text {TM }}$

CAMBRIDGE INTERNATIONAL MATHEMATICS
0607/63
Paper 6 (Extended)
October/November 2020
MARK SCHEME
Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

```
Abbreviations
awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
```

Question	Answer	Marks	Partial Marks
A	INVESTIGATION AREAS OF POLYGONS INSIDE AND OUTSIDE A CIRCLE		
1(a)	400	1	
1(b)	200	2	M1 for $0.5 \times 10 \times 10$ or $10^{2}+10^{2}$ or $2 \times 10 \times 10$
1(c)	$10^{2} \pi$ or $\pi \times 10 \times 10$	1	
1(d)	$2<\pi<4$	1	FT their $\mathbf{1 (b)}$ and their $\mathbf{1 (a)}$
2(a)	260 or 259.8[...]	3	M2 for $6 \times 0.5 \times 10 \times 10 \times \sin 60$ or $0.5 \times 10 \times \sqrt{10^{2}-5^{2}}$ oe or M1 for $0.5 \times 10 \times 10 \times \sin 60$ or $\left(10^{2}-5^{2}\right)$
2(b)(i)	57.7 or 57.5 to 57.8	3	M1 for $10 \div(0.5 \times$ base $)=\tan 60$ or correct use of equivalent trig methods or base ${ }^{2}=10^{2}+(0.5 \times \text { base })^{2}$ oe M1 for $0.5 \times$ their base $\times 10$ oe or $0.5 \times$ their base \times their base $\times \sin 60$
2(b)(ii)	$6 \times$ their (b)(i) oe or $6 \times \frac{\text { their base } \times 10}{2}$ oe	C1	
	346 or 345 to 346.8	B1	FT their (b)(i)
2(c)(i)	$2.6[0]<\pi<3.46$	1	FT their 2(a) and their 2(b)(ii)
2(c)(ii)	Correct explanation relating areas of polygons and the circle	1	e.g. Because the areas of the hexagons are closer to the area of the circle e.g. Less space between the circle and polygons
3(a)	Correct method for area of one triangle with apex at centre	C1	
	300	B1	Not from rounding
3(b)	Correct trig method to find base or slant height of triangle with apex at centre	C1	
	322 or 321.[5...]	2	M1 for correct method to find area of one triangle $\text { e.g. } 0.5 \times 10 \times 10 \times \tan (\text { their } 15)$
3(c)	$\begin{array}{\|l} 3<\pi<3.22 \\ \text { or } 3<\pi<3.21[5 \ldots] \end{array}$	1	FT their 3(a) and their 3(b)

Question	Answer	Marks	Partial Marks
4(a)(i)	$\begin{aligned} & n \times 0.5 \times 10 \times 10 \times \sin \frac{360}{n} \\ & \text { leading to } 50 n \sin \frac{360}{n} \end{aligned}$	2	M1 for area of [one] triangle $=$ $0.5 \times 10 \times 10 \times \sin \frac{360}{n}$
4(a)(ii)	$\begin{aligned} & n \times 0.5 \times 10 \times 2 \times 10 \tan \frac{360}{2 n} \\ & \text { leading to } 100 n \tan \frac{180}{n} \end{aligned}$	2	$\text { M1 for base of triangle }=2 \times 10 \tan \frac{360}{2 n}$
4(b)(i)	$50 \times 100 \times \sin \frac{360}{100}$	C1	
	314.0	B1	
4(b)(ii)	$100 \times 100 \times \tan \frac{180}{100}$	C1	
	314.3	B1	
4(c)	Correct explanation	1	$\begin{aligned} & \text { e.g. } 314.0<100 \pi<314.3 \\ & \text { so } 3.140<\pi<3.143 \\ & \text { so } \pi=3.14 \text { to } 3 \text { sf } \end{aligned}$ or Divide both areas by 100 and round the answers to 4 significant figures. The value of π is the first 3 figures.
B	MODELLING MODELLING CONTAINERS		
5(a)(i)	$V=x^{2} h$ oe	1	
5(a)(ii)	$\begin{aligned} & S=2 x^{2}+4 x h \\ & \text { or } S=2 x(x+2 h) \end{aligned}$	2	B1 for $2 x^{2}$ or $4 x h$ or correct expression not fully simplified or incorrectly simplified
5(b)(i)	$[h]=\frac{1000}{x^{2}}$	1	
5(b)(ii)	$\begin{aligned} & S=2 x^{2}+4 \times x \times \frac{1000}{x^{2}} \\ & \text { leading to } S=2 x^{2}+\frac{4000}{x} \end{aligned}$	1	
5(b)(iii)	1410	1	

Question	Answer	Marks	Partial Marks
5(c)	Correct sketch	B2	B1 for correct shape (dependent on vertical axis) B1 for correct endpoints and not crossing axes
	scale on vertical axis	C1	Indicating minimum at approximately 500
5(d)(i)	600	1	
5(d)(ii)	Cube	1	
	[side] 10 cm	1	
6(a)	$T=2 \pi r^{2}+2 \pi r h \quad$ oe	M1	
	$h=\frac{1000}{\pi r^{2}} \text { oe }$	M1	
	$\begin{aligned} & T=2 \pi r^{2}+2 \pi r \times \frac{1000}{\pi r^{2}} \\ & \text { leading to } T=2 \pi r^{2}+\frac{2000}{r} \end{aligned}$	A1	
6 (b)(i)	Correct sketch or 3 correct trials	C1	
	554 or 553.5 to 553.6	B1	
6b(ii)	$\begin{aligned} & r=5.42 \text { or } 5.419 \ldots \\ & h=10.8 \text { or } 10.83 \text { to } 10.84 \end{aligned}$	2	FT their (b)(i) B1 for each
7(a)	sketch of right-angled triangle with short sides labelled $\frac{x}{2}$ and h	C1	
	$\sqrt{\frac{x^{2}}{4}+h^{2}}$ oe	B1	

Question	Answer	Marks	Partial Marks
7(b)	$h=\frac{3000}{x^{2}} \text { oe }$	M1	
	$[P=] x^{2}+4 \times \frac{1}{2} \times x \times$ theirOE oe	M1	
	$[P=] x^{2}+4 \times \frac{1}{2} \times x \times \sqrt{\frac{x^{2}}{4}+\frac{9000000}{x^{4}}} \text { oe }$	M1	
	$\begin{aligned} & {[P=] x^{2}+2 x \frac{\sqrt{x^{6}+36000000}}{\sqrt{4 x^{4}}}} \\ & \text { leading to } P=x^{2}+\frac{\sqrt{x^{6}+36000000}}{x} \text { oe } \end{aligned}$	A1	
7(c)(i)	Correct sketch or 3 correct trials	C1	
	660 or 660.3 to 660.4	B1	
7c(ii)	$x=12.8$ or 12.84 to 12.85	1	
	$h=18.2$ or 18.17[...]	1	FT their x
8	Cylinder and correct reason	1	e.g. the nets do not tessellate (wasted material in production)

